Generate independent Gaussian covariates and (binary) logistic response data.
logistic_gaussian_dgp.RdGenerate independent normally-distributed covariates and logistic response data.
Usage
logistic_gaussian_dgp(
  n,
  p,
  s = p,
  betas = NULL,
  betas_sd = 1,
  intercept = 0,
  data_split = FALSE,
  train_prop = 0.5,
  return_values = c("X", "y", "support"),
  ...
)Arguments
- n
 Number of samples.
- p
 Number of features.
- s
 Sparsity level of features. Coefficients corresponding to features after the
sposition (i.e., positions i =s+ 1, ...,p) are set to 0.- betas
 Coefficient vector for observed design matrix. If a scalar is provided, the coefficient vector is constant. If
NULL(default), entries in the coefficient vector are drawn iid from N(0,betas_sd^2). Can also be a function that generates the coefficient vector; seegenerate_coef().- betas_sd
 (Optional) SD of normal distribution from which to draw
betas. Only used ifbetasargument isNULLor is a function in which casebetas_sdis optionally passed to the function assd; seegenerate_coef().- intercept
 Scalar intercept term.
- data_split
 Logical; if
TRUE, splits data into training and test sets according totrain_prop.- train_prop
 Proportion of data in training set if
data_split = TRUE.- return_values
 Character vector indicating what objects to return in list. Elements in vector must be one of "X", "y", "support".
- ...
 Not used.
Value
A list of the named objects that were requested in
return_values. See brief descriptions below.
- X
 A
data.frame.- y
 A response vector of length
nrow(X).- support
 A vector of feature indices indicating all features used in the true support of the DGP.
Note that if data_split = TRUE and "X", "y"
are in return_values, then the returned list also contains slots for
"Xtest" and "ytest".