Developer function for plotting summary of evaluation results.
Source:R/visualizer-lib-utils.R
plot_eval_summary.RdA helper function for developing new Visualizer plotting
functions that plot the summarized evaluation results as a boxplot,
scatter plot, line plot, or bar plot with or without 1 SD error
bars/ribbons. This function accepts either (1) a pre-computed tibble
containing the summarized evaluation results or (2) the Evaluator function
and its corresponding function arguments for computing the evaluation
results within this function call.
Usage
plot_eval_summary(
fit_results,
eval_tib = NULL,
eval_id = NULL,
eval_fun = paste0("summarize_", eval_id),
vary_params = NULL,
show = c("boxplot", "point", "line", "bar", "errorbar", "ribbon"),
x_str = "auto",
y_str = "auto",
err_sd_str = "auto",
color_str = "auto",
linetype_str = "auto",
facet_formula = NULL,
facet_type = c("grid", "wrap"),
plot_by = "auto",
add_ggplot_layers = NULL,
boxplot_args = NULL,
point_args = NULL,
line_args = NULL,
bar_args = NULL,
errorbar_args = NULL,
ribbon_args = NULL,
facet_args = NULL,
interactive = FALSE,
...
)Arguments
- fit_results
A tibble, as returned by the
fitmethod.- eval_tib
(Optional)
Tibble(typically from the output ofeval_summary_constructor) containing the summarized evaluation results to plot. If not provided, the evaluation results will be automatically computed by callingeval_fun(). If the summarized evaluation results have already been computed previously,eval_tibshould be specified to avoid duplicate computations.- eval_id
Character string. ID used as the suffix for naming columns in
eval_summary_constructor(). Should be the same as theeval_idargument ineval_summary_constructor().- eval_fun
Function used to compute evaluation results summary. This function is only used (and required) if necessary results have not already been computed in
eval_tib.- vary_params
A vector of parameter names that are varied across in the
Experiment.- show
Character vector with elements being one of "boxplot", "point", "line", "bar", "errorbar", "ribbon" indicating what plot layer(s) to construct.
- x_str
(Optional) Name of column in
eval_tibto plot on the x-axis. Default "auto" chooses what to plot on the x-axis automatically.- y_str
(Optional) Name of column in
eval_tibto plot on the y-axis ifshowis anything but "boxplot". Default "auto" chooses what to plot on the y-axis automatically.- err_sd_str
(Optional) Name of column in
eval_tibcontaining the standard deviations ofy_str. Used for plotting the errorbar and ribbon ggplot layers. Default "auto" chooses what column to use for the standard deviations automatically.- color_str
(Optional) Name of column in
eval_tibto use for the color and fill aesthetics when plotting. Default "auto" chooses what to use for the color and fill aesthetics automatically. UseNULLto avoid adding any color and fill aesthetic.- linetype_str
(Optional) Name of column in
eval_tibto use for the linetype aesthetic when plotting. Used only whenshow = "line". Default "auto" chooses what to use for the linetype aesthetic automatically. UseNULLto avoid adding any linetype aesthetic.- facet_formula
(Optional) Formula for
ggplot2::facet_wrap()orggplot2::facet_grid()if need be.- facet_type
One of "grid" or "wrap" specifying whether to use
ggplot2::facet_wrap()orggplot2::facet_grid()if need be.- plot_by
(Optional) Name of column in
eval_tibto use for subsetting data and creating different plots for each unique value. Default "auto" chooses what column to use for the subsetting automatically. UseNULLto avoid creating multiple plots.- add_ggplot_layers
List of additional layers to add to a ggplot object via
+.- boxplot_args
(Optional) Additional arguments to pass into
ggplot2::geom_boxplot().- point_args
(Optional) Additional arguments to pass into
ggplot2::geom_point().- line_args
(Optional) Additional arguments to pass into
ggplot2::geom_line().- bar_args
(Optional) Additional arguments to pass into
ggplot2::geom_bar().- errorbar_args
(Optional) Additional arguments to pass into
ggplot2::geom_errorbar().- ribbon_args
(Optional) Additional arguments to pass into
ggplot2::geom_ribbon().- facet_args
(Optional) Additional arguments to pass into
ggplot2::facet_grid()orggplot2::facet_wrap().- interactive
Logical. If
TRUE, returns interactiveplotlyplots. IfFALSE, returns staticggplotplots.- ...
Additional arguments to pass to
eval_fun(). This is only used if necessary results have not already been computed ineval_tib.
Value
If interactive = TRUE, returns a plotly object if
plot_by is NULL and a list of plotly objects if
plot_by is not NULL. If interactive = FALSE, returns
a ggplot object if plot_by is NULL and a list of
ggplot objects if plot_by is not NULL.
Examples
# generate example fit results data
fit_results <- tibble::tibble(
.rep = rep(1:2, times = 2),
.dgp_name = c("DGP1", "DGP1", "DGP2", "DGP2"),
.method_name = c("Method"),
# true response
y = lapply(1:4, FUN = function(x) rnorm(100)),
# predicted response
predictions = lapply(1:4, FUN = function(x) rnorm(100))
)
# generate example evaluation results data
eval_results <- list(
`Prediction Errors` = summarize_pred_err(
fit_results = fit_results,
truth_col = "y",
estimate_col = "predictions",
eval_id = "pred_err"
)
)
# create plot using pre-computed evaluation results
plt <- plot_eval_summary(fit_results = fit_results,
eval_tib = eval_results[["Prediction Errors"]],
eval_id = "pred_err",
show = c("point", "errorbar"),
facet_formula = ~ .metric)
# can customize plots using additional arguments or ggplot2::`+`
plt <- plot_eval_summary(fit_results = fit_results,
eval_tib = eval_results[["Prediction Errors"]],
eval_id = "pred_err",
show = c("point", "errorbar"),
facet_formula = ~ .metric,
facet_type = "wrap",
errorbar_args = list(width = 0.5),
facet_args = list(scales = "free")) +
ggplot2::labs(y = "Mean Prediction Error")
# can return interactive plotly plot
plt <- plot_eval_summary(fit_results = fit_results,
eval_tib = eval_results[["Prediction Errors"]],
eval_id = "pred_err",
show = c("point", "errorbar"),
facet_formula = ~ .metric,
interactive = TRUE)
# create plot without pre-computing evaluation results; instead, need to
# pass in summarize_* function and its arguments
plt <- plot_eval_summary(fit_results = fit_results,
eval_id = "pred_err",
eval_fun = "summarize_pred_err",
truth_col = "y",
estimate_col = "predictions",
show = c("point", "errorbar"),
facet_formula = ~ .metric)