Create a DGP which can generate()
data in an Experiment.
Arguments
- .dgp_fun
The user-defined data-generating process function.
- .name
(Optional) An optional name for the
DGP
, helpful for later identification.- ...
User-defined default arguments to pass to
.dgp_fun()
whenDGP$generate()
is called.
Value
A new DGP object.
Examples
# create an example DGP function
dgp_fun <- function(n, beta, rho, sigma) {
cov_mat <- matrix(c(1, rho, rho, 1), byrow = TRUE, nrow = 2, ncol = 2)
X <- MASS::mvrnorm(n = n, mu = rep(0, 2), Sigma = cov_mat)
y <- X %*% beta + rnorm(n, sd = sigma)
return(list(X = X, y = y))
}
# create DGP (with uncorrelated features)
dgp <- create_dgp(.dgp_fun = dgp_fun,
.name = "Linear Gaussian DGP",
# additional named parameters to pass to dgp_fun() by default
n = 50, beta = c(1, 0), rho = 0, sigma = 1)
print(dgp)
#> DGP Name: Linear Gaussian DGP
#> Function: function (n, beta, rho, sigma)
#> Parameters: List of 4
#> $ n : num 50
#> $ beta : num [1:2] 1 0
#> $ rho : num 0
#> $ sigma: num 1
data_uncorr <- dgp$generate()
cor(data_uncorr$X)
#> [,1] [,2]
#> [1,] 1.0000000 0.2131148
#> [2,] 0.2131148 1.0000000
data_corr <- dgp$generate(rho = 0.7)
cor(data_corr$X)
#> [,1] [,2]
#> [1,] 1.0000000 0.7815758
#> [2,] 0.7815758 1.0000000