These functions calculate the neg()
(number of estimated
negative cases) of a measurement system compared to the reference results
(the "truth").
Usage
neg(data, ...)
# S3 method for data.frame
neg(
data,
truth,
estimate,
estimator = NULL,
na_rm = FALSE,
case_weights = NULL,
event_level = "first",
...
)
neg_vec(
truth,
estimate,
estimator = NULL,
na_rm = FALSE,
case_weights = NULL,
event_level = "first",
...
)
Arguments
- data
Either a
data.frame
containing the columns specified by thetruth
andestimate
arguments, or atable
/matrix
where the true class results should be in the columns of the table.- ...
Not currently used.
- truth
The column identifier for the true class results (that is a
factor
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, afactor
vector.- estimate
The column identifier for the predicted class results (that is also
factor
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, afactor
vector.- estimator
One of:
"binary"
,"macro"
,"macro_weighted"
, or"micro"
to specify the type of averaging to be done."binary"
is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose"binary"
or"macro"
based onestimate
.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.- event_level
A single string. Either
"first"
or"second"
to specify which level oftruth
to consider as the "event". This argument is only applicable whenestimator = "binary"
. The default uses an internal helper that defaults to"first"
.
Value
A tibble
with columns .metric
, .estimator
, and
.estimate
with 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For neg_vec()
, a single numeric
value (or NA
).
Examples
# Two class example data
two_class_example <- data.frame(
truth = as.factor(sample(c("Class1", "Class2"), 100, replace = TRUE)),
predicted = as.factor(sample(c("Class1", "Class2"), 100, replace = TRUE))
)
# Compute number of estimated "negative" classes
neg(two_class_example, truth = truth, estimate = predicted)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <int>
#> 1 neg binary 53
neg_vec(two_class_example$truth, two_class_example$predicted)
#> [1] 53