Set R Markdown options for Evaluator
and Visualizer
outputs in
summary report.
Source: R/experiment-helpers.R
set_doc_options.Rd
Set R Markdown options for Evaluator
or Visualizer
outputs in the summary report. Some options include the height/width of
plots and number of digits to show in tables.
Usage
set_doc_options(
experiment,
field_name = c("evaluator", "visualizer"),
name,
show = NULL,
nrows,
...
)
Arguments
- experiment
An
Experiment
object.- field_name
One of "evaluator" or "visualizer".
- name
Name of
Evaluator
orVisualizer
to set R Markdown options.- show
If
TRUE
, show output; ifFALSE
, hide output in R Markdown report. DefaultNULL
does not change the "doc_show" field inEvaluator
/Visualizer
.- nrows
Maximum number of rows to show in the
Evaluator
's results table in the R Markdown report. IfNULL
, shows all rows. Default does not change the "doc_nrows" field in theEvaluator
. Argument is ignored iffield_name = "visualizer"
.- ...
Named R Markdown options to set. If
field_name = "visualizer"
, options are "height" and "width". Iffield_name = "evaluator"
, see options forvthemes::pretty_DT()
.
Value
The original Experiment
object with the doc_options
and/or show
fields modified in the Evaluator
/Visualizer
.
Examples
## create toy DGPs, Methods, Evaluators, and Visualizers
# generate data from normal distribution with n samples
normal_dgp <- create_dgp(
.dgp_fun = function(n) rnorm(n), .name = "Normal DGP", n = 100
)
# generate data from binomial distribution with n samples
bernoulli_dgp <- create_dgp(
.dgp_fun = function(n) rbinom(n, 1, 0.5), .name = "Bernoulli DGP", n = 100
)
# compute mean of data
mean_method <- create_method(
.method_fun = function(x) list(mean = mean(x)), .name = "Mean(x)"
)
# evaluate SD of mean(x) across simulation replicates
sd_mean_eval <- create_evaluator(
.eval_fun = function(fit_results, vary_params = NULL) {
group_vars <- c(".dgp_name", ".method_name", vary_params)
fit_results %>%
dplyr::group_by(dplyr::across(tidyselect::all_of(group_vars))) %>%
dplyr::summarise(sd = sd(mean), .groups = "keep")
},
.name = "SD of Mean(x)"
)
# plot SD of mean(x) across simulation replicates
sd_mean_plot <- create_visualizer(
.viz_fun = function(fit_results, eval_results, vary_params = NULL,
eval_name = "SD of Mean(x)") {
if (!is.null(vary_params)) {
add_aes <- ggplot2::aes(
x = .data[[unique(vary_params)]], y = sd, color = .dgp_name
)
} else {
add_aes <- ggplot2::aes(x = .dgp_name, y = sd)
}
plt <- ggplot2::ggplot(eval_results[[eval_name]]) +
add_aes +
ggplot2::geom_point()
if (!is.null(vary_params)) {
plt <- plt + ggplot2::geom_line()
}
return(plt)
},
.name = "SD of Mean(x) Plot"
)
# initialize experiment with toy DGPs, Methods, Evaluators, and Visualizers
# using piping %>% and add_* functions
experiment <- create_experiment(name = "Experiment Name") %>%
add_dgp(normal_dgp) %>%
add_dgp(bernoulli_dgp) %>%
add_method(mean_method) %>%
add_evaluator(sd_mean_eval) %>%
add_visualizer(sd_mean_plot)
# set R Markdown options for Evaluator/Visualizer (in this case, Visualizer)
experiment <- experiment %>%
set_doc_options(
field_name = "visualizer", name = "SD of Mean(x) Plot",
height = 10, width = 8
)