Helper functions for updating components of an Experiment
.
Source: R/experiment-helpers.R
update_funs.Rd
Helper functions for updating DGPs
, Methods
,
Evaluators
, and Visualizers
already added to an
Experiment
.
Usage
update_dgp(experiment, dgp, name, ...)
update_method(experiment, method, name, ...)
update_evaluator(experiment, evaluator, name, ...)
update_visualizer(experiment, visualizer, name, ...)
Arguments
- experiment
An
Experiment
object.- dgp
A
DGP
object.- name
An existing name identifying the object to be updated.
- ...
Not used.
- method
A
Method
object.- evaluator
An
Evaluator
object.- visualizer
A
Visualizer
object.
Examples
## create toy DGPs, Methods, Evaluators, and Visualizers
# generate data from normal distribution with 100 samples
dgp1 <- create_dgp(
.dgp_fun = function(n) rnorm(n), .name = "DGP", n = 100
)
# generate data from normal distribution with 500 samples
dgp2 <- create_dgp(
.dgp_fun = function(n) rnorm(n), .name = "DGP", n = 500
)
# compute mean of data
mean_method <- create_method(
.method_fun = function(x) list(mean = mean(x)), .name = "Method"
)
# compute mean of data
median_method <- create_method(
.method_fun = function(x) list(mean = median(x)), .name = "Method"
)
# evaluate SD of mean(x) across simulation replicates
sd_eval <- create_evaluator(
.eval_fun = function(fit_results, vary_params = NULL) {
group_vars <- c(".dgp_name", ".method_name", vary_params)
fit_results %>%
dplyr::group_by(dplyr::across(tidyselect::all_of(group_vars))) %>%
dplyr::summarise(sd = sd(mean), .groups = "keep")
},
.name = "Evaluator"
)
# evaluate Variance of mean(x) across simulation replicates
var_eval <- create_evaluator(
.eval_fun = function(fit_results, vary_params = NULL) {
group_vars <- c(".dgp_name", ".method_name", vary_params)
fit_results %>%
dplyr::group_by(dplyr::across(tidyselect::all_of(group_vars))) %>%
dplyr::summarise(var = var(mean), .groups = "keep")
},
.name = "Evaluator"
)
# plot SD of method results across simulation replicates
sd_plot <- create_visualizer(
.viz_fun = function(fit_results, eval_results, vary_params = NULL,
eval_name = 1) {
if (!is.null(vary_params)) {
add_aes <- ggplot2::aes(
x = .data[[unique(vary_params)]], y = sd, color = .dgp_name
)
} else {
add_aes <- ggplot2::aes(x = .dgp_name, y = sd)
}
plt <- ggplot2::ggplot(eval_results[[eval_name]]) +
add_aes +
ggplot2::geom_point()
if (!is.null(vary_params)) {
plt <- plt + ggplot2::geom_line()
}
return(plt)
},
.name = "Visualizer"
)
# plot variance of method results across simulation replicates
var_plot <- create_visualizer(
.viz_fun = function(fit_results, eval_results, vary_params = NULL,
eval_name = 1) {
if (!is.null(vary_params)) {
add_aes <- ggplot2::aes(
x = .data[[unique(vary_params)]], y = var, color = .dgp_name
)
} else {
add_aes <- ggplot2::aes(x = .dgp_name, y = var)
}
plt <- ggplot2::ggplot(eval_results[[eval_name]]) +
add_aes +
ggplot2::geom_point()
if (!is.null(vary_params)) {
plt <- plt + ggplot2::geom_line()
}
return(plt)
},
.name = "Visualizer"
)
# initialize experiment with toy DGPs, Methods, Evaluators, and Visualizers
# using piping %>% and add_* functions
experiment <- create_experiment(name = "Experiment Name") %>%
add_dgp(dgp1) %>%
add_method(mean_method) %>%
add_evaluator(sd_eval) %>%
add_visualizer(sd_plot)
print(experiment)
#> Experiment Name: Experiment Name
#> Saved results at: results/Experiment Name
#> DGPs: DGP
#> Methods: Method
#> Evaluators: Evaluator
#> Visualizers: Visualizer
#> Vary Across: None
# example usage of update_* functions
experiment <- experiment %>%
update_dgp(dgp2, "DGP") %>%
update_method(median_method, "Method") %>%
update_evaluator(var_eval, "Evaluator") %>%
update_visualizer(var_plot, "Visualizer")