Method which can fit() data in an Experiment.
Generally speaking, users won't directly interact with the Method R6
class, but instead indirectly through create_method() and the
following Experiment helpers:
Public fields
- name
- The name of the - Method.
- method_fun
- The user-defined method function. 
- method_params
- A (named) list of default parameters to input into the method function. 
Methods
Method new()
Initialize a new Method object.
Usage
Method$new(.method_fun, .name = NULL, ...)Method fit()
Fit a Method on data using the provided Method
parameters.
Arguments
- data_list
- List of data to pass into - Method$method_fun(). If named, should match arguments in- Method$method_fun().
- ...
- User-defined arguments to pass into - Method$method_fun()that will overwrite the initialized- Methodparameters. If no additional arguments are provided, the- Methodwill be fit using- Method$method_fun()and the parameters that were set when- Method$new()was called.
- .simplify
- If - TRUE, remove list wrapping from any column that has scalar values.
- method
- A - Methodobject.
Method print()
Print a Method in a nice format, showing the
Method's name, function, and parameters.
Examples
# generate some data
dgp_fun <- function(n, beta, rho, sigma) {
  cov_mat <- matrix(c(1, rho, rho, 1), byrow = TRUE, nrow = 2, ncol = 2)
  X <- MASS::mvrnorm(n = n, mu = rep(0, 2), Sigma = cov_mat)
  y <- X %*% beta + rnorm(n, sd = sigma)
  return(list(X = X, y = y))
}
dgp <- create_dgp(.dgp_fun = dgp_fun,
                  .name = "Linear Gaussian DGP",
                  n = 50, beta = c(1, 0), rho = 0, sigma = 1)
data_corr <- dgp$generate(rho = 0.7)
# create an example Method function
lm_fun <- function(X, y, cols) {
  X <- X[, cols]
  lm_fit <- lm(y ~ X)
  pvals <- summary(lm_fit)$coefficients[-1, "Pr(>|t|)"] %>%
    setNames(paste(names(.), "p-value"))
  return(pvals)
}
# create Method with default argument `cols`
lm_method <- Method$new(
  .method_fun = lm_fun,
  .name = "OLS",
  cols = c(1, 2)
)
print(lm_method)
#> Method Name: OLS 
#>    Function: function (X, y, cols)  
#>    Parameters: List of 1
#>      $ cols: num [1:2] 1 2
# fit the Method on data with non-default arguments
lm_method$fit(data_corr, cols = 2)
#> # A tibble: 1 × 1
#>    ` p-value`
#>         <dbl>
#> 1 0.000000318
# fit the Method on data with default arguments
lm_method$fit(data_corr)
#> # A tibble: 1 × 2
#>   `X1 p-value` `X2 p-value`
#>          <dbl>        <dbl>
#> 1      0.00135        0.107
