Method
which can fit()
data in an Experiment.
Generally speaking, users won't directly interact with the Method
R6
class, but instead indirectly through create_method()
and the
following Experiment
helpers:
Public fields
name
The name of the
Method
.method_fun
The user-defined method function.
method_params
A (named) list of default parameters to input into the method function.
Methods
Method new()
Initialize a new Method
object.
Usage
Method$new(.method_fun, .name = NULL, ...)
Method fit()
Fit a Method
on data using the provided Method
parameters.
Arguments
data_list
List of data to pass into
Method$method_fun()
. If named, should match arguments inMethod$method_fun()
....
User-defined arguments to pass into
Method$method_fun()
that will overwrite the initializedMethod
parameters. If no additional arguments are provided, theMethod
will be fit usingMethod$method_fun()
and the parameters that were set whenMethod$new()
was called..simplify
If
TRUE
, remove list wrapping from any column that has scalar values.method
A
Method
object.
Method print()
Print a Method
in a nice format, showing the
Method
's name, function, and parameters.
Examples
# generate some data
dgp_fun <- function(n, beta, rho, sigma) {
cov_mat <- matrix(c(1, rho, rho, 1), byrow = TRUE, nrow = 2, ncol = 2)
X <- MASS::mvrnorm(n = n, mu = rep(0, 2), Sigma = cov_mat)
y <- X %*% beta + rnorm(n, sd = sigma)
return(list(X = X, y = y))
}
dgp <- create_dgp(.dgp_fun = dgp_fun,
.name = "Linear Gaussian DGP",
n = 50, beta = c(1, 0), rho = 0, sigma = 1)
data_corr <- dgp$generate(rho = 0.7)
# create an example Method function
lm_fun <- function(X, y, cols) {
X <- X[, cols]
lm_fit <- lm(y ~ X)
pvals <- summary(lm_fit)$coefficients[-1, "Pr(>|t|)"] %>%
setNames(paste(names(.), "p-value"))
return(pvals)
}
# create Method with default argument `cols`
lm_method <- Method$new(
.method_fun = lm_fun,
.name = "OLS",
cols = c(1, 2)
)
print(lm_method)
#> Method Name: OLS
#> Function: function (X, y, cols)
#> Parameters: List of 1
#> $ cols: num [1:2] 1 2
# fit the Method on data with non-default arguments
lm_method$fit(data_corr, cols = 2)
#> # A tibble: 1 × 1
#> ` p-value`
#> <dbl>
#> 1 0.000000318
# fit the Method on data with default arguments
lm_method$fit(data_corr)
#> # A tibble: 1 × 2
#> `X1 p-value` `X2 p-value`
#> <dbl> <dbl>
#> 1 0.00135 0.107